
Unity Selftuition – Rotations

Introduction
In Unity you'll want to change the transforms of your objectinstances quite often. The transform of an
object determines its position, rotation and scale (size) in the world. If you want to do anything beyond
changing textures on a static scene, there is no way around manipulating the transform. Now, this is
hardly a problem when translating (changing the position), or scaling (changing an objects size).

When rotating however, this is becomes a problem when you manipulate eulerangles, the easiest way to
understand rotations. You'll have to deal with Gimbal Lock. (a phenomenon that makes small,
incremental changes to rotations makes them go haywire when over a certain point) To prevent this,
Unity internally represents rotations as Quaternions. But what are Quaternions?

In this selftuition, I will try to clear both my own confusion about Rotations as well as any confusion
readers might have. I will focus only on 3D.

Settle in! :)

Table of Contents
Introduction..1
Method...2
Work...2

Unity functions..2
Physics...3

Transform.Rotate...3
Euler Angles..3

Gimbal lock..4
Why is this is useful..5

Transform.Rotate again...5
Vector3.RotateTowards...6
Quaternion.LookRotation..7
Quaternions...7

Real and Imaginary values..7
What is a Quaternion?..8
Rotating using Quaternions..8
More..9

Quaternion.LookRotation again..9
Quaternion.RotateTowards..9
Transform.RotateAround...9
Transform.LookAt...10
Quaternion.FromToRotation...10
Quaternion.Euler...10
Quaternion.AngleAxis...10
Quaternion.eulerAngles...10

Transform.eulerAngles..11
Transform.localEulerAngles, Transform.localrotation..11

End...11
Sources / Further material..12

Method
I will do this by looking at the possible things you can use in Unity to rotate objects the way you want
them to, by exploring all terms related to rotations I might come across, and by using this knowledge to
build simulations and examples that use the methods I learn.

Work

Unity functions
The first thing we're going to do is simply look at what Unity provides for us to rotate things. A quick
look into the Unity manual should do this for us. A filtered list is shown below. I have omitted
everything that is related to 2D, as this is not the focus of this study, and also functions relating to
building your own editor tools, the GUI, basically everything that does not have anything to do with
rotating the objects in your scene during runtime. A special category is for the functions relating to
Physics. These are interesting and useful for what we want to achieve just as much as “regular”
rotating, but I won't focus on these right now.

Transform.Rotate
Applies a rotation of eulerAngles.z degrees around the z axis, eulerAngles.x degrees around the x axis,
and eulerAngles.y degre...
Vector3.RotateTowards
Rotates a vector current towards target.
Quaternion.RotateTowards
Rotates a rotation from towards to.
Transform.RotateAround
Rotates the transform about axis passing through point in world coordinates by angle degrees.
Transform.LookAt
Rotates the transform so the forward vector points at /target/'s current position.
Quaternion
Quaternions are used to represent rotations.
Quaternion.FromToRotation
Creates a rotation which rotates from fromDirection to toDirection.
Quaternion.Euler
Returns a rotation that rotates z degrees around the z axis, x degrees around the x axis, and y degrees
around the y axis (in t...
Quaternion.AngleAxis
Creates a rotation which rotates angle degrees around axis.
Transform.eulerAngles
The rotation as Euler angles in degrees.
Transform.localEulerAngles

 Return to TOC - 2 / 13

http://docs.unity3d.com/ScriptReference/Transform-localEulerAngles.html
http://docs.unity3d.com/ScriptReference/Transform-eulerAngles.html
http://docs.unity3d.com/ScriptReference/Quaternion.AngleAxis.html
http://docs.unity3d.com/ScriptReference/Quaternion.Euler.html
http://docs.unity3d.com/ScriptReference/Quaternion.FromToRotation.html
http://docs.unity3d.com/ScriptReference/Quaternion.html
http://docs.unity3d.com/ScriptReference/Transform.LookAt.html
http://docs.unity3d.com/ScriptReference/Transform.RotateAround.html
http://docs.unity3d.com/ScriptReference/Quaternion.RotateTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.RotateTowards.html
http://docs.unity3d.com/ScriptReference/Transform.Rotate.html

The rotation as Euler angles in degrees relative to the parent transform's rotation.
Transform.localRotation
The rotation of the transform relative to the parent transform's rotation.
Transform.rotation
The rotation of the transform in world space stored as a Quaternion.
Quaternion.eulerAngles
Returns the euler angle representation of the rotation.
Quaternion.operator *
Combines rotations lhs and rhs.

Physics

Rigidbody.MoveRotation
Rotates the rigidbody to rotation.
CharacterJoint.swingAxis
The secondary axis around which the joint can rotate.
ConfigurableJoint.targetAngularVelocity
This is a Vector3. It defines the desired angular velocity that the joint should rotate into.
ConfigurableJoint.targetRotation
This is a Quaternion. It defines the desired rotation that the joint should rotate into.
JointMotor
The JointMotor is used to motorize a joint.
Rigidbody.constraints
Controls which degrees of freedom are allowed for the simulation of this Rigidbody.
Rigidbody.rotation
The rotation of the rigdibody.
Rigidbody.inertiaTensor
The diagonal inertia tensor of mass relative to the center of mass.

Transform.Rotate
public void Rotate(Vector3 eulerAngles, Space relativeTo = Space.Self);

Euler Angles
So what are Euler angles? There is a neat video that explains this (source 1, see Sources)

Euler angles are a system used to represent any rotation in 3D space. This is set up by rotation around
three axes, in hierarchical order. This last bit is important as it makes clear that by rotating one axis,
you influence the other axes.
In Unity, the order is Z first, then X and lastly Y.

Okay, let's try this out. I'll build an airplane with three axes, in hierarchical order. What I want the plane
to do is simple: I want it to be able to pitch, roll and yaw. These are three motions that are simply a
rotation around the X-,Y- and Z-axis. Rolling is a rotation around the Z-axis, Pitching is one around the
X-axis, and jawing is a rotation around the Y-axis. I made a video to explain what effect I'm pursueing.
(source 16)

 Return to TOC - 3 / 13

http://docs.unity3d.com/ScriptReference/Transform.Rotate.html
http://docs.unity3d.com/ScriptReference/Rigidbody-inertiaTensor.html
http://docs.unity3d.com/ScriptReference/Rigidbody-rotation.html
http://docs.unity3d.com/ScriptReference/Rigidbody-constraints.html
http://docs.unity3d.com/ScriptReference/JointMotor.html
http://docs.unity3d.com/ScriptReference/ConfigurableJoint-targetRotation.html
http://docs.unity3d.com/ScriptReference/ConfigurableJoint-targetAngularVelocity.html
http://docs.unity3d.com/ScriptReference/CharacterJoint-swingAxis.html
http://docs.unity3d.com/ScriptReference/Rigidbody.MoveRotation.html
http://docs.unity3d.com/ScriptReference/Quaternion-operator_multiply.html
http://docs.unity3d.com/ScriptReference/Quaternion-eulerAngles.html
http://docs.unity3d.com/ScriptReference/Transform-rotation.html
http://docs.unity3d.com/ScriptReference/Transform-localRotation.html

Now please look at this screenshot of the unity editor. Also, you can follow along with the unityproject
supplied with this article (source 17)

As you can see, the axes are applied in a hierarchical way. This means that the rotation of the Y-axis
influences the rotations of the X- and Z-axes, as well as the plane. The X-axis's rotation affects the Z-
axis, and the plane, but not the Y-axis. This order of first Z, then X and then Y is not set in stone, but in
Unity it happens to be in this order. The fact that it is set up in an hierarchical way is important, as it
means the rotations of the axes influence eachother. This creates Gimbal lock (see below) and it also
means a rotation will not behave in the way you might expect.

Gimbal lock

Gimbal lock is what happens when two of the axes align. (See the screenshot below)

 Return to TOC - 4 / 13

Here, the Y-axis and the Z-axis are aligned. This happened by simply rotating the (red) X-axis 90
degrees. We now have a situation in which rotating around the Z-axis and rotating around the Y-axis
have the exact same result. That means we've lost the possibility to rotate in three dimensions. When
you are interpolating from one orientation to another, this property of using Eulerangles causes the
object to rotate in an unpredictable way. Instead of interpolating smoothly between two orientations, it
will follow a strange arc because at some point two of the axes align which influences the motion. A
visual explanation of this phenomenon can be found under sources (source 3)

Why is this is useful

So what can we use eulerangles for? Eulerangles make it relatively simple to understand rotations as
you can always see a rotations as a combination of rotation around three predefined axes. If you want
to have a character that looks left and right, you can easily achieve this by applying a float value to the
Y-axis rotation.

Transform.Rotate again
public void Rotate(Vector3 eulerAngles, Space relativeTo = Space.Self);

Let's head back to the Transform.Rotate function and see how we can apply this knowledge in creating
a rotation we want. Let's use the plane again. We want to let it pitch, roll and yaw by using the
Transform.Rotate function. (please rewatch the video to see what this means. Each motion relates to a
rotation around one axis)

Transform.Rotate example
public float pitchingspeed;
public float jawingspeed;
public float rollingspeed;

 Return to TOC - 5 / 13

http://docs.unity3d.com/ScriptReference/Transform.Rotate.html

void Update () {
transform.Rotate(new Vector3(pitchingspeed,jawingspeed,rollingspeed));

}

Please check the example to see how this behaves. As you can see, the plane is rotating around its own
Y, X and Z-axis, constantly updating its rotation, and you can predict what kind of motion you'll get by
altering the pitching-, jawing- or rollingspeed.

So this is an easy way to make your object rotate in a predictable way.

There is another thing you can alter here, and that is that you can pass an extra parameter saying the
thing that is rotating, will do so around the world axes, instead of the local axes of the rotating object.
I've included an example of that as well. In most cases, it makes the most sense for an object to rotate
around its own axes. Right now I do not see a use for rotating in relation to world space, but I am sure
there is one.

This is a way to make an object orbit another object as well, although it is not really a good practice.
Set up two objects (object A and object B) in such a way that A is the centerobject that is being orbited
around, and B an orbiting object. Parent B to A so that A becomes the parent, and rotate A using the
Transform.Rotate function. This way you have a simple orbiteffect. However, this means you cannot
rotate the parent without altering its child, so when using this method, you lose this possibility.

Vector3.RotateTowards
public static Vector3 RotateTowards(Vector3 current, Vector3 target, float maxRadiansDelta,
float maxMagnitudeDelta);

This function doesn't manipulate the transform of an object directly. It treats a given Vector3 as a
rotation and interpolates between a target Vector3 and a current Vector3. Because the transform is set
up as three Vector3's, we can still use this for rotations though. Let's see what the example this function
has, does. Also, check the unity files for an example. (source 17)

Vector3.RotateTowards Unity example
public Transform target;
public float speed;
void Update() {

Vector3 targetDir = target.position - transform.position;
float step = speed * Time.deltaTime;
Vector3 newDir = Vector3.RotateTowards(transform.forward, targetDir,

step, 0.0F);
Debug.DrawRay(transform.position, newDir, Color.red);
transform.rotation = Quaternion.LookRotation(newDir);

}

 Return to TOC - 6 / 13

http://docs.unity3d.com/ScriptReference/Vector3.RotateTowards.html

Simply put, this interpolates between two vectors in a way that makes sense for rotations. You specify a
current rotation and it will nudge this in the direction of the targetdirection you've given it, and return
that. This can be very useful, but it does not require much explanation. More interesting are the things
they do to make their example work. Why is the direction they're rotating towards (targetDir) the same
as the position of the target minus the own position? And why do they set the rotation using
Quaternion.LookRotation? What does that do?

Well, the first one is quickly answerable. Let's consider just a single dimension: X. If you have a
direction between two vector1s, how can you determine what that direction is? You can see the two
vector1s as points on a line. Vector A (4) and Vector B (2). Now how do we determine the direction
from Vector A to Vector B? We simply substract A from B.
Vector1 B minus Vector1 A

(2)-(4)=(-2)

This is -2! This is a new Vector1, which we'll call C. To get from A to B is C. But, if you use C to get a
direction (in 1 dimension this is either negative or positive), it is also the direction to get from A to B.

So in three dimensions, it uses the same trick across the X, Y and Z-coordinates. Because they do not
interfere with eachother while substracting, this can be done safely.

This is quite an important concept. Vectors can be used to represent a position, a way to traverse from
one position to another, and at the same time they can be used to represent a direction. This can be
confusing, but because a Vector3 is basically just a set of 3 real values, it (sort of) makes sense that
these values can represent multiple things.

Quaternion.LookRotation
public static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up);

According to the unity documenation, this creates a rotation and returns it as a quaternion. What? So
how does this actually work? What are quaternions? Alright, calm down.

Quaternions
I will start off by explaining why you would want to know anything about quaternions. A quaternion is
a way to describe orientations and rotations but it is not applied in a hierarchical manner. This means
that it does not suffer from Gimbal Lock. This is the main advantage of quaternions over other methods
of rotating things.

A quaternion is somewhat similar to a Vector3. It is a format to hold data. Whereas a Vector3 can hold
three Real values, a quaternion holds one Real value and three Imaginary values. The terms Real and
Imaginary refer to the mathematical definiton of these terms.

Real and Imaginary values

When you square something, you take a number and multiply it by itself. When you take the square
root of a number, you find the “original” number that was squared to get the number inside the square
root.

 Return to TOC - 7 / 13

http://docs.unity3d.com/ScriptReference/Quaternion.LookRotation.html

Square and square root
x = 2
sqr(x) = 2 * 2 = 4
sqrt(4) = 2 = x

When you square something, it will always become positive. (except for zero) (Because you either
multiply a positive number with that positive number, which gives a positive number, or you multiply a
negative number with that negative number, which also becomes positive)

Squaring is (almost) always positive
a = 1
b = -1
sqr(a) = 1 * 1 = 1
sqr(b) = -1 * -1 = 1
sqrt(a) = 1 or -1
sqrt (b) = 1 or -1

What happens then if you try to find the square root of a negative number? You get a number that
doesn't hold a relationshop to anything real anymore. When you take the square root of -1, you get the
imaginary number i.

i
sqrt (-1) = i
sqr (i) = i * i = -1

Okay. So we've established that there is an imaginary number i. Similarly, other imaginary numbers
exist.

What is a Quaternion?

So how is this relevant for our understanding of what a quaternion is?

Well, like I said before, you can see a quaternion as a way of formatting data. Instead of the format
Vector3(real, real, real) you have the format Quaternion(real, imaginary, imaginary, imaginary). So a
Quaternion is a thing that consists of a real value and three imaginary values. These three imaginary
values are often labeled i, j and k. Because you have three imaginary values you can use them to rotate
in three dimensions.

However, the relationship between the three imaginary values and the real value is not straightforward,
ie. you cannot directly convert each imaginary value to a x, y or z-value. This is also why Unity advises
you to not manipulate any of the components of a Quaternion directly and instead supplies you with a
few functions to use them.

 Return to TOC - 8 / 13

When you have a quaternion, you can create another quaternion you can use to rotate the first
quaternion. This is similar to vectors where a Vector3 is a point in 3D space, but can also be a
translation or a direction. A quaternion is a point in a sort of bizarre 4D space, and another quaternion
can be used to rotate this quaternion.

Rotating using Quaternions

Simply put, you can create a quaternion that describes a rotation, and that rotation can be ANY rotation
in 3D space.

When you are using quaternions for rotations, you are using the properties of the imaginary part of
quaternions.

You can see the imaginary part of a quaternion as a Vector in 3D space. However, keep in mind that it
is actually part of the 4D quaternion! This is just a simplification to make it easier to visualize.

You can choose a rotation quaternion to get the rotation you want. This means you'll choose a
quaternion of which the imaginary part is perpendicular to the imaginary part of the first quaternion.
There are an infinite amount of quaternions that are perpendicular, however. This second quaternion's
imaginary part will be your rotation axis. This means you have an infinite amount of rotation axes to
choose from.

Then, you can input an angle that rotates a certain amount around that rotation axis, and you can use
the value of that angle to calculate what your rotation quaternion should be to get the desired rotation.

More

That is about as far as I will go in this article. If you are interested in a more indepth explanation of the
mathematical nature of quaternions and why they can be used for rotations, please refer to the excellent
article “Understanding Quaternions”, linked under Sources. (source 11)

Quaternion.LookRotation again
public static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up);

So how can we apply this knowledge about quaternions in Unity? Unity provides an example of how
you could use Quaternion.LookRotation to get a similar behaviour to the LookAt function.

Quaternion.LookRotation Unity Example
Vector3 LookVector = target.position - transform.position;
Quaternion Rotation = Quaternion.LookRotation(LookVector);
transform.rotation = Rotation;

Okay, the first line of code does the same as the Vector3 example, it specifies a direction to look in.

 Return to TOC - 9 / 13

http://docs.unity3d.com/ScriptReference/Quaternion.LookRotation.html

Next, it creates a quaternion that describes the orientation you would get when you were looking in that
direction. Finally, it sets the orientation of the transform to that exact orientation, resulting in the thing
you're rotating facing the target. You can see this at work in the example Unity project provided with
this article. (source 17)

However you can use this orientation to overwrite the orientation of other transforms as well. For
example, you might want a row of soldiers to all look to the right, you could specify that orientation
with one LookRotation and then pass it to all soldiers. An example of something like this is included in
the Unity project.

Quaternion.RotateTowards
public static Quaternion RotateTowards(Quaternion from, Quaternion to, float maxDegreesDelta);
Rotates a rotation from towards to.

This function is similar to the Vector3.Rotatetowards functions, but directly uses quaternions instead of
first using vector3's.

Transform.RotateAround
public void RotateAround(Vector3 point, Vector3 axis, float angle);

Another vector function, this allows you to specify a rotation axis and a point to rotate around. It works
pretty much like you'd expect. The rotation axis is in world space, so that can give some strange results
you might not want.

Transform.LookAt
public void LookAt(Transform target, Vector3 worldUp = Vector3.up);

This function can be used in the specific case you want the transform of the object the script is attached
to, to change its orientation directly so it is facing a target you have specified. So it is like applying
Quaternion.LookRotation but has a more limited use. However, it is easier to use because you needn't
bother with Quaternions or axes.

Quaternion.FromToRotation
public static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection);

A way to get a rotation that describes how to get from a certain direction to another direction.
This differs from Quaternion.LookRotation where you would set the orientation directly. This function
gives a rotation quaternion which describes how to get from orientation A to orientation B. This gives
the following code:

Quaternion.FromToRotation
Vector3 LookVector = Target.position - transform.position;

 Return to TOC - 10 / 13

http://docs.unity3d.com/ScriptReference/Quaternion.FromToRotation.html
http://docs.unity3d.com/ScriptReference/Transform.LookAt.html
http://docs.unity3d.com/ScriptReference/Transform.RotateAround.html
http://docs.unity3d.com/ScriptReference/Quaternion.html
http://docs.unity3d.com/ScriptReference/Quaternion.html
http://docs.unity3d.com/ScriptReference/Quaternion.html
http://docs.unity3d.com/ScriptReference/Quaternion.RotateTowards.html

 Quaternion Rotation =
Quaternion.FromToRotation(transform.forward,LookVector);
 transform.rotation = Rotation * transform.rotation;

As you can see in the last line of code, you apply the rotation to the original orientation of the object,
instead of setting the rotation directly. You could use this to rotate twice I think.

Quaternion.Euler
public static Quaternion Euler(float x, float y, float z);

Using this function you can create a Quaternion rotation using the Euler system. Please pay attention to
the order the rotation are performed in.

Quaternion.AngleAxis
public static Quaternion AngleAxis(float angle, Vector3 axis);

This is pretty straightforward.

Quaternion.eulerAngles
public Vector3 eulerAngles;

This allows you to manipulate quaternion rotations by inputting the eulerangles that that same rotation
would have. Example:

Quaternion.eulerAngles example
Quaternion q = Quaternion.identity;
q.eulerAngles = new Vector3(xfloat, yfloat, zfloat);

Quaternion.identity is the quaternion equivalent of vector3.zero

Transform.eulerAngles
public Vector3 eulerAngles;

The short way of writing transform.rotation.eulerAngles

Transform.localEulerAngles, Transform.localrotation
So far when we're setting transform.rotation, we are setting the world rotation. You have rotation
relative to the world axis system, and rotation relative to the parent of the object you're inspecting. If

 Return to TOC - 11 / 13

http://docs.unity3d.com/ScriptReference/Transform-eulerAngles.html
http://docs.unity3d.com/ScriptReference/Quaternion-eulerAngles.html
http://docs.unity3d.com/ScriptReference/Quaternion.AngleAxis.html
http://docs.unity3d.com/ScriptReference/Quaternion.Euler.html

this confuses you, please look it up or play with the world and local button in Unity itself to get a feel
for it. It is probably best to try and move an object instead of rotating it to understand global and local
space.

Anyway. The local-methods are for setting local rotation, so it takes the parent's rotation into account.

End
I hope I have supplied you with enough information to understand rotations, as well as some practical
examples you can copy into your own projects. As mentioned in the Introduction, I was really
struggling with rotations, not knowing how to properly use them. While writing this article I gained a
lot of knowledge on how you use rotations and I hope I have succeeded in passing some of that
knowledge on. If you feel like you need some more information or maybe hear it in a different way,
please check out the sources linked below.

Good luck with your own Unity endeavors! :)

Sources / Further material
Recommended

Eulerangles
1 https://www.youtube.com/watch?v=q0jgqeS_ACM
2 https://en.wikipedia.org/wiki/Euler_angles

Gimbal Lock
3 https://www.youtube.com/watch?v=zc8b2Jo7mno

Quaternions
4 http://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
5 https://www.youtube.com/watch?v=RmElJeJjtWE
6 https://www.youtube.com/watch?v=KdW9ALJMk7s
7 https://www.youtube.com/watch?v=Eh8BU5HUJtY
8 http://developerblog.myo.com/quaternions/

 Return to TOC - 12 / 13

http://developerblog.myo.com/quaternions/
https://www.youtube.com/watch?v=Eh8BU5HUJtY
https://www.youtube.com/watch?v=KdW9ALJMk7s
https://www.youtube.com/watch?v=RmElJeJjtWE
http://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://www.youtube.com/watch?v=zc8b2Jo7mno
https://en.wikipedia.org/wiki/Euler_angles
https://www.youtube.com/watch?v=q0jgqeS_ACM

9 http://mathworld.wolfram.com/Quaternion.html
10 http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
11 http://www.3dgep.com/understanding-quaternions/

Rotate functions
12 http://docs.unity3d.com/ScriptReference/30_search.html?q=rotate

Matrices are a thing

Cross Product
13 https://www.mathsisfun.com/algebra/vectors-cross-product.html

unit vector cross-product
14 http://betterexplained.com/articles/cross-product/

similar article
15 http://blog.preoccupiedgames.com/quaternions-not-satan/

PitchRollYaw video
16 https://www.youtube.com/watch?v=F9yZyDrsTds

Unity files
17 http://studenthome.hku.nl/~niels.dejong/files/unity_zelfstudie/Selftuition_rotations.zip

 Return to TOC - 13 / 13

http://studenthome.hku.nl/~niels.dejong/files/unity_zelfstudie/Selftuition_rotations.zip
https://www.youtube.com/watch?v=F9yZyDrsTds
http://blog.preoccupiedgames.com/quaternions-not-satan/
http://betterexplained.com/articles/cross-product/
https://www.mathsisfun.com/algebra/vectors-cross-product.html
http://docs.unity3d.com/ScriptReference/30_search.html?q=rotate
http://www.3dgep.com/understanding-quaternions/
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://mathworld.wolfram.com/Quaternion.html

	Introduction
	Method
	Work
	Unity functions
	Physics

	Transform.Rotate
	Euler Angles
	Gimbal lock
	Why is this is useful

	Transform.Rotate again
	Vector3.RotateTowards
	Quaternion.LookRotation
	Quaternions
	Real and Imaginary values
	What is a Quaternion?
	Rotating using Quaternions
	More

	Quaternion.LookRotation again
	Quaternion.RotateTowards
	Transform.RotateAround
	Transform.LookAt
	Quaternion.FromToRotation
	Quaternion.Euler
	Quaternion.AngleAxis
	Quaternion.eulerAngles
	Transform.eulerAngles
	Transform.localEulerAngles, Transform.localrotation

	End
	Sources / Further material

